
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 5743

Computer
Systems

Laboratory

Operating Principles of

MultiKron Virtual Counter
Performance Instrumentation
for MIMD Computers

Alan Mink

U. S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

CMRF November 1995

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

Partially sponsored by the

Advanced Research Projects Agency

I

QC

100

.056

NO. 5743

1995

NISTIR 5743

Operating Principles of
MultiKron Virtual Counter
Performance Instrumentation

for MIMD Computers

Alan Mink

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Computer Systems Laboratory

Gaithersburg, MD 20899

November 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

^ »'

•li'.

„ 1

"
... i

' 'oV/,

Viv; .. vi^' ,;‘!4 .K

Wf' /

f,--,,,.<«A,f'..'.. itl y-.'iW' "'.^U .l:';iT<i|Cl,'.iJ'

myMi} :<i

'•

;V(j'
' vli'i

;, .'v'',
' .

'

'i

TABLE OF CONTENTS

Page

INTRODUCTION 1

BACKGROUND 2

Event Tracing 2

Counters 3

MultiKron_vc FEATURES 4

PROCESSOR INTERFACE 5

MEASUREMENT SUPPORT 6

Software Reset 6

Timestamp 6

CSR Register 7

High Order 32-Bit Register 7

RESOURCE COUNTERS 8

Resource Counters and their Shadow Registers 8

Processor Reading and Writing of a Resource Counter 8

Processor Incrementing of a Resource Counter 9

Resource Counter Control Registers 9

Configuration Register 9

Enable Register 9

SRAM 9

TESTMODE 10

STATUS 1

1

REFERENCES 1

1

Table 1. MultiKron_vc Control and Status Register 13

Table 2. MultiKron_vc Address Assignments 13

-iii-

Table 3. Configuration Register encoding 14

Table 4. ENABLE Register encoding 14

Table 5. MultiKron_vc - 208 QFP Pin Assignments 15

Table 6. MultiKron_vc - description of pin names 16

Table 7. MultiKron_vc MCM - 140 QFP Pin Assignments 17

-iv-

Operating Principles of MultiKron Virtual Counter
Performance Instrumentation for MIMD Computers

Alan Mink

The MultiKron* and MultiKron II performance instrumentation provided both

Trace sampling and Resource Counters, but required a separate measurement data col-

lection facility for collecting sample data. Although providing a large amount of meas-

urement detail. Trace sampling has the disadvantage of requiring additional investment

in logic, wires and space to provide for the collection facilities. An alternative measure-

ment approach that would eliminate the need for a collection facility, and its associated

cost, is to eliminate Trace sampling and only provide for a very large number of

Resource Counters, at the cost of some loss of measurement detail. The MultiKron vir-

tual counter (MultiKron_vc) performance instrumentation chip provides such a feature.

Similar in concept to virtual memory, thousands of virtual counters are available but

only a small number are real counters that can be active at any one time. Unlike virtual

memory, where swapping is transparent to the programmer, due to extra hardware and

kernel software support, swapping of counter blocks must currently be handled by the

programmer.

Key words: Computers; hardware support; MIMD; multiprocessor computers;

performance characterization; VLSI.

INTRODUCTION

The MultiKron* [MIN92] and MultiKron II [MIN94] performance instrumentation provided both

Trace sampling and Resource Counters, but required a separate measurement data collection facility for

collecting sample data. Such data collection facilities have taken the form of local dedicated memory as

well as a cable to a separate workstation. Although providing a large amount of measurement detail. Trace

sampling has the disadvantage of requiring additional investment in logic, wires and space to provide for

the collection facilities. The capital investment on a large massively parallel computer was estimated to be

approximately 5% of the cost of the machine. An alternative measurement approach that would eliminate

the need for a collection facility, and its associated cost, is to eliminate Trace sampling and only provide

for a very large number of Resource Counters, at the cost of some loss of measurement detail. The Mul-

tiKron virtual counter (MultiKron_vc) performance instrumentation chip provides such a feature. Similar

in concept to virtual memory, thousands of virtual counters are available but only a small number are real

counters that can be active at any one time. Unlike virtual memory, where management is transparent to

* MultiKron is a trademark of NIST.

This National Institute of Standards and Technology, an agency of the U.S. Government,

contribution is not subject to copyright in the United States. Certain commercial equipment,

instruments, or materials may be identified in this paper to adequately specify experimental

procedures. Such identification does not imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that materials or equipment identified are

necessarily the best available for the purpose.

This work was partially sponsored by the Advanced Research Projects Agency.

the programmer, due to extra hardware and kernel software support, management of a "page” of counters

must currently be handled explicitly by the programmer.

This evolution of jjerformance measurement instrumentation is part of the parallel processor perfor-

mance project at NIST [CAR88, CAR89, MIN90, MIN92, MIN93,MIN94,MIN95,ROB89]. The goal of

the project is to characterize the performance of parallel computers as well as uniprocessors. The focus of

our instrumentation work is to provide hardware support in obtaining performance measurement data with

tolerable perturbation to both the processes executing and the architecture on which they are executing.

The body of this report provides a brief background discussion about performance measurement and then

goes on to describe the features of the MultiKron_vc and it processor interface.

BACKGROUND

Tracing events and counting are two basic concepts of performance measurement. The concept of

tracing events is to be able to follow different execution threads and to know when various events (in the

execution of the code) occur and to be able to correlate their times of occurrence. The concept of counting

provides the basic mechanism for clocks, stop watches, histograms, etc., and can also tally events at high

frequency rates; a must for high speed hardware events. The exploration of instrumentation to provide

these basic concepts in various ways while under the constraints of low perturbation, low cost, and similar

technology has been the focus of our work. Perturbation refers to disturbances caused by the introduction

of measurement to the process being measured, also known as the probe affect. If one disturbs the meas-

ured program by adding too much extra code, the measured performance could be different from that of the

uninstrumented version of the program. Cost refers to the size (amount of real estate required) as well as

the production cost of the measurement instrumentation. Integrated circuits (chips) are both small and

inexpensive, in mass production, when compared to printed circuit boards. Similar technology refers to

the circuit technology used in the measurement instrumentation compared to the circuit technology used in

die architecture being measured. If you need faster circuit technology in your measurement instrumenta-

tion than in that used in the measured architecture, then there would be no such technology to use when
your computer architecture is already using the fastest circuit technology!

Event Tracing

The fundamental measurement function in event tracing is to determine the time of occurrence of

various key events in the execution of a computer’s tasks (processes) with high precision. These times can

be used later to calculate elapsed time, duty cycle, access latency, and the like. The measurement data

necessary to spiecify a trace event we call a Trace sample. External monitoring of instruction addresses

fetched is fruidess, since internal caches mask the actual instrucdons executed and external addresses are

physical addresses while compilers produce code in terms of virtual addresses. Due to these problems, an

internal view of program acdvity is necessary to determine when an event occurs so that measurement data

for a Trace sample may be collected. Thus passive monitoring (an all hardware approach) is insufficient.

For minimal perturbadon of the executing program a hybrid approach (hardware assisted software vs. all

-2-

software) to event tracing is employed in which a small amount of embedded code in the program (known

as a trigger or a probe) causes hardware capture of the Trace sample for each event

Current time is important data to collect about an event. Thus a Timestamp Counter is needed with

a time resolution on the same order as the instruction execution rate and enough precision to avoid counter

wrap-around during any experiment. To allow correlation of samples taken by multiple measurement dev-

ices the Timestamp counters should all be synchronized.

Many modem computers are composed of a number of nodes. The coupling between nodes may be

fairly loose, but each node may consist of a number of processors which are tightly-coupled together. A
single measurement chip can efficiently serve all the tightly-coupled processors at a node. The Trace sam-

ple must include the identity of the node, the processor (if a node contains more than one processor), and

the process.

The MultiKron [MIN92] and MultiKron II [MIN94] performance measurement chips designed by

NIST provide facilities to capture Trace samples. By designing the data capture hardware as a memory-

mapped device, the probe code could be kept to as little as a single memory write per event. Execution of

this probe code informs the measurement hardware of the occurrence of an event and causes capture of the

user specified data from the write as part of the Trace sample. This user data, which is stored as part of

the Trace sample, provides the means to communicate information about the internal program view. The

user data will include event identification, which identifies where in program execution the event oc-

curred, along with any information necessary to qualify the event. Event identification, as an example, can

be specified as a single number which may only have meaning to the experimenter, such as "27" which

could indicate a location in the code where a message was just received. Qualifying information could be

the size and/or source of that message. The MultiKron and MultiKron II provide for a wire per processor,

up to eight processors in a tightly-coupled node, to identify the processor requesting the sample. A
Source Address register is provided which contains the node and the process identity packed together

and should be updated by the operating system at each context switch. Since a single measurement chip

may be used to measure a number of tightly-coupled processors, each working on a different process, pro-

cess identification must be kept for each processor. This is done by a set of Source Address registers.

Each processor is assigned its own Source Address register in which node and process identification is

kept.

A MultiKron and MultiKron II Trace sample consists of the concatenation of the user-written data,

the associated Source Address register (for node and process id), the identity of the processor within the

node, the Timestamp counter, and the sample typ)e.

Counters

Trace events occur relatively infrequently, typically hundreds or thousands of program instructions

apart. Other typ)es of events occur much more frequently, even on every processor clock cycle for short

periods. The hybrid approach recommended for event trace support is unsuitable for measuring these very

frequent events; they demand a fully-hardware measurement technique. As a compromise between resolu-

tion, cost, and data storage requirements, we have chosen to accumulate counts as a measure for these

events. This amounts to a form of preprocessing of the measurement data, with a reduction in the cost and

data storage requirements. Of course some detail is lost. This counter concept is the design basis for the

-3-

MultiKron_vc.

Counters can be used for a wide range of measurement if flexible input switching is provided on a

per-counter basis. It must be possible to increment each counter by hardware signals such as cache hits or

misses, clock cycles during waits for shared-resource access, or events such as message transmissions. A
stop-watch capability can be realized by counting clock cycles between events. If the counters can also be

incremented by software, they can be used to keep running tallies of items added to, or removed from,

software-managed queues or buffers, average frequency-of-use of code, or other frequent software events.

During the measurement period, each counter can be selectively enabled and disabled as many times as

desired, and can thus, for example, accumulate counts during multiple uses of a piece of code.

The MultiKron and MultiKron D provide for counters via a set of Resource Counters. The contents

of the Resource Counters can be either read directly or concatenated with a Trace sample to form a

Resource sample.

MultiKron vc FEATURES

To eliminate the need for a collection facility, and its associated cost, the MultiKron virtual counter

(MultiKron_vc) performance instrumentation chip does not provide the capability to acquire Trace sam-

ples. Instead it provides for a very large number of Resource Counters, at the cost of some loss of meas-

urement detail. The MultiKron_vc provides access for up to 64K virtual counters, although there are only

64 physical counters on the MultiKron_vc chip. The 64 physical counters are divided into 4 banks of 16

counters each, see Figure 1. As with the MultiKron and MultiKron H, flexible input switching is provided

on a per-counter basis. To provide the thousands of virtual counters the MultiKron_vc requires a set of

dedicated static RAM (SRAM) chips. These SRAM chips are tightly coupled to the MultiKron_vc chip

and store all the inactive counters, while the active counters reside in the MultiKron_vc. This is similar to

virtual memory where contiguous memory locations are grouped into pages (contiguous counters are

grouped into banks), and active memory pages are kept in primary memory (active counter banks are kept

in the MultiKron_vc), and inactive memory pages are kept in secondary memory (inactive counter banks

are kept in the SRAM). Commands are implemented to SWAP, STORE, and LOAD a counter bank. A
SWAP command stores the specified active counter bank into its home location in SRAM and then loads

an inactive bank from SRAM, the location of which is specified in the command, into the same active bank

in the MultiKron_vc. A STORE command stores the specified active counter bank into its home location

in SRAM, leaving the active bank in the MultiKron_vc unchanged. A LOAD command loads an inactive

bank from SRAM, from the location specified in the command, into the specified active bank in the

MultiKron_vc, overwriting the previous contents of that active bank.

There are a set of bank registers, one register for each bank. These registers contain the home address

of the associated bank, along with a valid bit. These registers are both readable and writable, although the

valid bit is handled separately. When a bank register is written, the valid bit is automatically set as valid. A
separate "invalidate bank" conunand is required to clear it. When a bank is marked invalid, a STORE com-

mand and the store portion of the SWAP command are ignored.

The counters can be treated either as separate 32-bit counters or an even/odd pair may be grouped to

form a 64-bit counter. Each even/odd pair is configured independently. Thus one may configure a bank as

16 32-bit counters, 14 32-bit counters and 1 64-bit counter, ... , 2 32-bit counters and 7 64-bit counters , or

8 64-bit counters

-4-

As an operational example, one may consider allocating counter banks separately. Such as two

banks for the OS kernel and the other two to a separate process. The kernel may use one bank for perfor-

mance measurements of itself and this bank would always stay resident in the MultiKron_vc. The second

kernel bank could be used for system level performance measurements of the current executing process.

Thus as part of the context change when processes are switched, this second counter bank would be

swapped for one that is associated with the next process to be executed. The other two counter banks could

be allocated to the executing process and swapped as desired. On context change, the home address of the

current process counter banks can be read by the kernel from the associated MultiKron_vc bank register

and stored in its process table. Then these counter banks could be stored in their home locations in SRAM
and new counter banks loaded for the new process from the addresses specified in its process table.

When a process is finished executing a part of the code it was measuring, it can store that counter bank in

SRAM and leave it there until execution is completed. As the process progresses to other areas of code, it

can use other counter banks and store them as needed or switch back to an earlier bank when re-entering

previous code areas. All counter banks can be retrieved from SRAM at the end of execution for analysis.

PROCESSOR INTERFACE

The data path between a processing node and the MultiKron_vc is 64 bits wide. On a read by a pro-

cessor, any unused bit positions return a logical "1". On a write from a processor, any unused bit positions

are ignored. We divide the physical address issued by a processor into three fields, the byte field, the Mul-

tiKron field, and the device field. The byte field is the least-significant two bits of the address, which

specifies a byte within a 4 byte word. Since MultiKron data is either 4 or 8 bytes aligned on 4 byte boun-

daries these two bits are always zeros for MultiKron access. The MultiKron field is the next 12 address

bits which is used directly by the MultiKron_vc. The device field consists of the remaining higher order

address bits which must be externally decoded to establish the base address of the MultiKron_vc.

The address mapping for the 12-bit MultiKron_vc address field is shown in Table 2. The four high

order address bits of the MultiKron_vc field is the command subfield. Only 0 to 5, of the possible 0 to 15,

are defined. Command 0 is a general command. Its low order 8 bits specify the operation and they are

sparsely populated. Commands 1, 2, and 4 operate on a single Resource Counter and thus their low order

8 bits are divided into two 4-bit subfields one to specify the bank, b, and the other to specify the counter, n,

within that bank. Commands 3 and 5 are bank level operations and their low order 8 bits are also divided

into two 4-bit subfields one to specify the bank, b, and the other to specify the operation.

A MultiKron_vc processor interaction is initiated by asserting (LOW) either the READS or WRITEB
signals. See Tables 5 and 6 for signal pin assignments and descriptions. The device field address decoder

output must be combined with the processor’s READ or WRITE signal to produce the corresponding

READS or WRITES and the STARTS signals. After the MultiKron_vc has completed its action, it will

assert (LOW) the ACKS signal. The READS or WRITES signals to the MultiKron_vc must be de-

asserted before the MultiKron_vc asserts its ACKS signal. The STARTS signal to the MultiKron_vc is in-

tended to augment the READS and WRITES signals, so that the READS or WRITES can be placed and

left at their asserted logic level for longer than the MultiKron_vc requires and the STARTS can be assert-

ed and de-asserted rather than READS or WRITES. If STARTS is always asseted, it has no effect —

READS or WRITES will control the MultiKron_vc processor interaction. If STARTS is always de-

asserted, it will inhibit any MultiKron_vc processor interaction. Normally the ACKS signal will be asset-

ed for one Node clock cycle. When ACKS is asseted any processor write is completed. When ACKS is

-5-

de-asserted the output data for any processor read is removed. If the processor requires more time to ac-

quire the output data for a processor read, it should assert (LOW) the HOLDB signal any time before the

ACKB signal is asserted. The data and the ACKB will remain active until the HOLDB signal is de-

asserted. All signals are synchronized to the positive-going transitions of the Node clock; A(ddress),

D(ata), STARTB, HOLDB, READB, WRITEB, and ACKB signals must have adequate setup and hold

times relative to these transitions. The processor interface timing is illustrated in Figure 2.

The MultiKron_vc has two clock inputs, the Node clock and the Timestamp clock. The Node clock is

the clock signal used internally by the MultiKron_vc for all synchronization. The MultiKron_vc will not

function without a Node clock signal. The Timestamp clock is a slower clock (and should not exceed 1/3

of the Node clock frequency) and is used to increment the Timestamp counter and optionally any of the

Resource Counters. The MultiKron_vc design targetted a Node clock frequency of 50 MHz and a Times-

tamp frequency of 10 MHz. Lower Node clock frequency presents no problem. For example, a Node clock

frequency of 40 MHz and a and a Timestamp frequency of 13.3 MHz, or a Node clock frequency of 20

MHz and a Timestamp frequency of 6.66 MHz are acceptable operating conditions.

MEASUREMENT SUPPORT

It is expected that one MultiKron_vc chip will be used for each node of a multiprocessor, where a

node is a shared-memory, tightly-coupled cluster of one or more processors. The MultiKron_vc chip (Fig-

ure 1) is a memory mapped device requiring a block of addresses, see Table 2 for a summary of the address

mapping. In this discussion, addresses are those of 32-bit or 64-bit locations, and are given as hexade-

cimal numbers.

Software Reset

This pseudoregister (Address=base+0; Write Only, data is ignored) initializes most of the machine

state of the MultiKron_vc. Unlike the hardware reset pin (RESETB), it does not affect the contents of the

Timestamp Counter.

Timestamp

This 56-bit counter (Address=base+2; Read always but Write only in test mode, 56 bits) tallies the

Timestamp clock and is reset to zero by a system reset (RESETB) on power-up. The hardware system

reset signal is a low-active asynchronous signal and must be active for a minimum of five Node clock cy-

cles. To synchronize the timestamp of multiple MultiKron_vc chips in the machine, the occurrence of this

reset should be synchronized throughout the machine. Timestamp Synchronization is then maintained by

-6-

distribution of a common clock to each MultiKron_vc chip. The Timestamp clock should not exceed 1/3

(one third) of the MultiKron_vc Node clock frequency. The Timestamp is readable in full 56-bit preci-

sion, but is not writable except in test mode. The 56-bit Timestamp yields a wrap-around epoch of over a

100 years at 10 MHz.

CSR Register

The Control and Status Register (Address=base+1; Read/Write, 16 bits) is used to configure the basic

operational modes of the MultiKron_vc and to allow examination of these settings. The current register

format is shown in Table 1

.

The enabling of a (Node clock) Wait State for CPU interactions (bit 12) and for SRAM interactions

(bit 1 1) are set by the logic levels at the two package pins, WCPU and WMEM, during hardware and

software reset. The CPU wait state provides additional setup time for processors that would otherwise pro-

vide very short times for address decoding by the MultiKron_vc. The SRAM wait state allows use of

slower SRAMs or for a faster MultiKron_vc Node clock.

Bits 14 and 15 control the width of the processor data used by the MultiKron_vc, either 32 bits or 64

bits (default). Reading bit 14 provides the current status of this option, a 1 indicates 32-bit mode while a 0

indicates 64-bit mode. To set the desired option requires a 1 written to one of these bit positions. Writing

a 0 has no effect and leaves the option unchanged.

High Order 32-Bit Register

The MultiKron_vc is designed for a 64-bit processor interface, but has a High Order 32 Bit Register

(Address=base+7; Read/Write, 32 Bits) that can be used to implement a 32-bit processor interface. By

placing the MultiKron_vc into its 32-bit mode via bit 14 of the CSR, input data bits 32-63 are taken from

this High Order 32-bit register on processor writes rather than from the input pins. Output data bits 32-63

are always (whether or not in 32-bit mode) placed in that register, as well as on the corresponding output

pins, on processor reads. Thus, in 32-bit mode two reads or two writes are required instead of one in 64-bit

mode. In 32-bit mode the High Order 32-bit register should be written to first before the normal write, and

read from after the normal read. Note, the MultiKron_vc makes no provision to keep these two reads or

writes indivisible. Interrupts or multiple processors could overwrite data by interleaving their operations.

-7-

RESOURCE COUNTERS

The 64 Resource Counters, four banks of 16 counters, can be used to count clocks, external hardware

events, or software-commanded events. The accumulated value of these counts can be read out directly

from the counters by the processor or stored in the MultiKron_vc’s dedicated SRAM for later retrieval by

the processor.

Resource Counters and their Shadow Registers

The Resource Counters (Read/Write/Load/Store and Increment, 32 or 64 Bits) accumulate counts of

either the Node clock, the Timestamp clock, 1/10 the Timestamp clock, 1/100 the Timestamp clock, exter-

nal signals (rising edge), or software generated triggers. The external input signals must not exceed the

Node clock frequency.

When one of the Resource Counters is being read, the contents of all Resource Counters in that bank

are copied into the corresponding shadow registers, while the Resource Counters can continue to count.

This ensures that the counter contents stored in the shadow registers all correspond to the same instant -

the time of the read that initiated the copy. Then the contents of the shadow registers are used for data out-

put.

The Resource Counters will count past their maximum value by wrapping around to zero. The length

of time it takes for a 32-bit counter to reach its maximum value depends on the rate of the signal being tal-

lied. For a 50 MHz signal a 32-bit counter fills in about 85 seconds; for a 5 MHz signal a 32-bit counter

fills in about 14 minutes; for a 500 kHz signal a 32-bit counter fills in about 2.3 hours. Each even/odd ad-

dress pair of Resource Counters can be configured as a single 64-bit Resource Counter, greatly increasing

its maximum value. For a 50 MHz signal a 64-bit counter fills in about 12,000 years; for a 5 MHz signal a

64-bit counter fills in about 120,(XX) years; for a 500 kHz signal a 64-bit counter fills in about a million

years.

Processor Reading and Writing of a Resource Counter. Each Resource Counter may be read or written

by a processor. Writing to a Resource Counter will place the data written into that Resource Counter, the

shadow registers are not affected. There are two types of reads for the Resource Counters, one is a read-

with-copy, MultiKron_vc commands 1 and 2, and the other is a read-without-copy, MultiKron_vc com-

mand 4. All reads are done from the shadow registers, the copy refers to whether or not the contents of the

Resource Counters of the specified bank are copied into the shadow registers before reading. Reading-

with-copy any Resource Counter, causes all Resource Counters of that bank to be copied into their shadow

register. Thus a read-with-copy yields the most current Resource Counter value, while a read-without-

copy yields the value last copied (if any). Reading-with-copy all of the Resource Counters of a bank con-

secutively will yield data at 16 different instances. To obtain the data from all of the Resource Counters of

that bank at the same instant, one read-with-copy should be followed by 15 reads-without-copy. This along

with the ability to SWAP banks in SRAM provides a means to implement a virtual set of Resource

Counters.

-8-

Processor Incrementing of a Resource Counter. A MultiKron_vc command 4 will cause the

corresponding Resource Counter to be incremented, if the "software increment" option is selected in the

bank configuration register field associated with this counter. This software increment allows the pro-

grammer to selectively use the Resource Counters to accumulate counts of software events.

Resource Counter Control Registers

The Resource Counters can be individually controlled via two registers per bank, the Enable register

and the Configuration register. Each of these registers is divided into 16 4-bit fields, one for each of the 16

Resource Counters in that bank, see Tables 3 and 4. These control registers are designed so that a zero

value written into any field leaves that field unchanged. Only a non-zero value will change a field. This

allows subsets of the Resource Counters to be shared between different experimenters or different parts of

one experiment, without the need to know the control settings of other fields. It is expected that the

counters would be disabled prior to their use via the Enable register, and the counting source selected for

each counter via the Configuration register. The Resource Counters can then be selectively enabled or dis-

abled as desired via the Enable register to accumulate counts during the experiment. The Resource

Counters can be configured to provide a stop-watch feature for either hardware or software events. For

software events, set the configuration register to count one of the internal clocks. Then via the Enable re-

gister, enable the counter at a start event and disable it at an end event. For hardware events, set the

configuration register to count one of the internal clocks only when gated by the external signal. Once en-

abled, via the Enable register, the counter will only count when the external signal is active. The external

signal thus acts as an Enable/Disable to the counter.

Configuration Register. The Configuration Register (Read/Write, 64 bits) is used to select the counting

sources for each Resource Counter, as well as determining if the odd/even counter pair should be a single

64-bit counter or separate 32-bit counters, see Table 3. The counting sources are internal clocks, a

software generated signal, an external signal from a package pin private to each counter, or an internal

clock only when the external signal is active (i.e., the external signal is used as an enable signal).

Enable Register. The Enable Register (Read/Write, 64 bits) is used to enable or disable the Resource

Counters, see Table 4. There are two choices when enabling a counter. One choice is to reset the counter

to zero before enabling it. The other choice is to enable the counter with its previous contents intact.

SRAM

The MultiKron_vc chip requires a dedicated static random access memory (SRAM) for storage of the

virtual counter banks. The data path between the MultiKron_vc and the SRAM is 40 bits wide. This al-

lows the contents of one 32-bit counter and its associated 4-bit fields in both the Enable and Configuration

registers to be transferred together.

-9-

I

The SRAM is controlled by four signal lines from the MultiKron_vc, a read/write (MEM_R_WB), an

output enable (MEM_OEB), and two chip enables (MEM_CE1B and MEM_CE2H). The SRAMs are not
i'

clocked devices and require only that the setup and hold times are met. To read from the SRAM requires
!

enabling MEM_OEB (active low) and setting MEM_R_WB to read (high). After the required setup time [

the SRAM output is available. To write to the SRAM requires disabling MEM_OEB (high) and toggling

MEM_R_WB (low and then back to high). As long as the input data setup time and the length of time i

MEM_R_WB is low is sufiicient, then the data is latched into the SRAM on the low-to-high transition of

MEM_R_WB. Such SRAMs are commercially available, [CYP91, IDT94] are two examples.
i

There is no direct interaction between the processor and the SRAM. The only interaction with the

SRAM is through the SWAP, LOAD, and STORE commands of the MultiKron_vc. A SWAP command
consists of first doing a STORE command followed by a LOAD conunand. The STORE command uses the

|

12 bits of the associated bank register concatenated with an internal 4-bit counter, as the low order bits, to

form a 16-bit home (base) SRAM address. If the associated valid bit is disabled, indicating that the con-

tents of this active counter bank is invalid, then the STORE command terminates with no further action

(i.e., it does nothing). The upper 12 bits of the SRAM address, from the bank register, are held constant

during the entire command. Only the the low order 4 bits from the internal counter change, to address the i

locations of each counter in the bank. The signals MEM_CE1B and MEM_CE2H are enabled to activate
[•

the SRAM, the signal MEM_OEB is set high to disable the SRAM output, and the internal 4-bit counter is
[

initialized to all ones. Each SRAM write begins by setting the MEM_R_WB signal low, and terminates by I

setting it high, which causes the data to be latched into the SRAM. Then the MultiKron_vc steps through
j

the entire 16 counter bank, one at a time, writing the contents of one 32-bit counter and its associated 4-bit
j

fields in both the Enable and Configuration registers to the SRAM, and decrementing the internal 4-bit
I

counter. When the internal 4-bit counter reaches zero the operation completes.

The LOAD command loads the low order 12 bits of the processor data into the specified bank register

and sets the valid bit. The LOAD command then uses the 12 bits of the bank register concatenated with an

internal 4-bit counter, as the low order bits, to form a 16-bit home SRAM address. The signals

MEM_CE1B and MEM_CE2H are enabled to activate the SRAM, the signals MEM_OEB (low) and

MEM_R_WB (high) are set to place the SRAM in read mode, and the internal 4-bit counter is initialized

to all ones. The upper 12 bits of the SRAM address, from the bank register, are held constant during the

entire command. Only the the low order 4 bits from the internal counter change, to address the locations of

each counter in the bank. The SRAM control signals are held constant during the read operation, only the
i

address changes which causes the SRAM output to produce the new data after the specified latency. The i

MultiKron_vc steps through the entire bank of 16 counters reading the contents of one 32-bit counter and !

its associated 4-bit fields in both the Enable and Configuration registers, from the SRAM, and writing that 1

information into the specified bank of the MultiKron_vc, and decrementing the internal 4-bit counter.

When the internal 4-bit counter reaches zero the operation completes. I

i

I

I

t

I

I

TEST MODE
i

The MultiKron_vc chip can be placed in test mode only by enabling (LOW) the TESTB pin. When
j

in test mode the Timestamp becomes writable and incrementable by the processor. These features could i

conflict with normal operations and so were placed in this special test mode.
i

(

i

- 10-

STATUS

The MultiKron_vc integrated circuit illustrates that powerful hardware support for multiprocessor

computer performance characterization can be incorporated in a single chip. The MultiKron_vc has been
designed using a commercially available CAD toolset, and has been fabricated in 0.7 micrometer CMOS
using a commercially available standard cell library and a commercially available fabrication line. These
chips have been packaged in a 208 QFP (Quad Flat Pack), see Table 5. The MultiKron_vc chip is com-
mercially available directly from the fabrication manufacturer without any NRE (non-reoccurring en-

gineering) costs. Contact NIST for further information (Alan Mink (301) 975-5681 or amink@nist.gov).

Preliminary testing indicates that these chips can successfully operate at 50 MHz.

The MultiKron_vc along with its required dedicated SRAM is a perfect candidate for an MCM
(multi-chip module) implementation. We have designed such an MCM for a 140 QFP package, see Table

7, whose overall size is not much larger than the MultiKron_vc 208 QFP package. We have also designed

an SBus printed circuit board capable of supporting either the separate MultiKron_vc and SRAM pack-

aged chips or a single integrated MCM chip. This board will be part of an SBus experimenter’s toolkit

which will be available for distribution to collaborating researchers.

REFERENCES

[CAR88] Carpenter, R.J. Performance measurement instrumentation for multiprocessor computers.

Gelenbe (ed).. High Performance Computer Systems. 1988; Paris; North Holland; pp 81-92;

ISBN 0 444 70485 X.

[CAR89] Carpenter, RJ. Performance measurement instrumentation at NBS. Simmons, et al, eds.; In-

strumentation for Future Parallel Computing Systems; Santa Fe; Addison-Wesley (1989) pp
159-183; ISBN 0 201 50390 5.

[CYP91] Cypress Semiconductor BiCMOS/CMOS Data Book, part# CY7B185 and CY7C185 (8K by

8-Bits SRAM), 1991.

[IDT94] Integrated Device Technology Data Book, part# IDT7164 (8K by 8-Bits SRAM), 1994.

[MIN90] Mink, A.; Carpenter, R.; Nacht, G.; Roberts, J. Multiprocessor performance-measurement in-

strumentation. IEEE Computer: 63-74; 1990 September.

[MIN92] Mink, A. and Carpenter, R.J. Operating Principles of MuluKron Performance Instrumentation

for MIMD Computers. Natl Inst of Standards and Technology, Gaithersburg, MD., NISTIR

4737; 1992 Mar.

[MIN93] Mink, A., Roberts, J. W. and Antonishek, J., "Operating Principles of the VME MultiKron In-

terface Board," National Institute of Standards and Technology, NISTIR 5233, Aug. 1993.

[MIN94] Mink, A. "Operating Principles of MultiKron II Performance Instrumentation for MIMD
Computers," National Institute of Standards and Technology, NISTIR 5571, Dec. 1994.

- 11 -

[MIN95] Mink, A., Nacht, G. and Antonishek, J., "Operating Principles of the SBus MultiKron Inter-

face Board," National Institute of Standards and Technology, NISTIR 5652, May 1995.

[ROB89] Roberts, J.; Antonishek, J.; Mink, A. Hybrid performance measurement instrumentation for

loosely-coupled MIMD architectures. Proc. 4th Distributed Memory Computer Conf.

(DMCC4); 1989; Monterey, CA; 7 p.

- 12-

Table 1. MultiKron_vc Control and Status Register (CSR) Format

Status Bit Control

(read) Position (write)

Logical "0" 0-11 Read Only, write data ignored.

SRAM Wait State Enabled 12 Read Only, write data ignored (set at RESET)
CPU Wait State Enabled 13 Read Only, write data ignored (set at RESET)
Logical "0" 14 Read Only, write data ignored

32-bit mode Enabled 14 Enable High Order Reg for upper 32 bits of input data

Logical "0" 15 Enable pins 32-63 for upper 32 bits of input data (64-bit mode)

Table 2. MultiKron_vc Address Assignments

Address Description

Hex Read Write

xO - Reset chip. Timestamp unchanged

xl CSR Register CSR Register

x2 Timestamp Register (56 bits) * Timestamp Register (56 bits)

x3 - * Increment Timestamp Register

x4-x6 - -

x7 High Order 32-bit Reg High Order 32-bit Reg

x8-x0FF - -

xlbn ** 32-bit Cntr n of Bank b 32-bit Cntr n of Bank b

x2bn ** 32/64-bit Cntr n/n+1 of Bank b ** 32/64-bit Cntr n/n-i-1 of Bank b

x3b0 - Clear all Cntrs of Bank b

x3bl - Invalidate Bank b

x3b2 Bank register b Bank register b

x3b3 Bank b 64-bit Enable register Bank b 64-bit Enable register

x3b4 Bank b 64-bit Config register Bank b 64-bit Config register

x3b5-x3bF - -

x4bn Read-without-copy Cntr n of Bank b Software Incr Cntr n of Bank b

x5b0 - -

x5bl - Store Bank b (if valid) in SRAM
x5b2 - Load Bank b from SRAM block ddd

x5b3 - Swap Bank b with SRAM block ddd

x5b4-x5bF - -

x600-xFFF - -

* Available ONLY in TEST mode

** EVEN addresses 64 bits, ODD addresses 32 bits

ddd is the 12 least-significant bits of the data written

Bank b and Counter n are each 4-bit fields of the address.

There are 16 Counters per Bank, but only 4 Banks out of the possible 16 are implemented.

- 13 -

Table 3. Configuration Register encoding (4-bit field/Resource Cntr)

four Bit

Encoding Description

0000 NOP

0001 External Signal (Count external signals on low to high transition)

0010
**

0011
II

0100 Software Increment (Increment counter by software)

0101
II

0110
It

0111 Double Precision, for odd Cntrs only; Software Increment for even Cntrs

(This setting applies only to ODD Resource Counters, which will

then be tied to the counting source of its EVEN Counter pair)

1000 TSclk gated by EXT (count Timestamp elks gated by EXT signal — high)

1001 Nodeclk gated by EXT (count Nodeclks gated by EXT signal — high)

1010 1/10 TSclk gated by EXT (count TSclks divided by 10, gated by EXT signal — high)

1011 1/100 TSclk gated by EXT (count TSclks divided by 100, gated by EXT signal — high)

1100 TSclk (count Timestamp elks)

1101 Nodeclk (count Nodeclks)

1110 1/10 TSclk (count TSclks divided by 10)

** nil 1/100 TSclk (count TSclks divided by 1(X))

** default setting

Table 4. ENABLE Register encoding (4-bit field/Resource Cntr)

four Bit

Encoding Description

xxOO
** xxOl

xxlO

xxll

NOP
Disable counter

Enable counter

Reset & Enable counter

** default setting

- 14-

Table 5. MultiKron_vc - 208 QFP Pin Assignments (941220).

1 DO 53 D42 105 P-8 157 AM4
2 D1 54 D43 106 M3 158 AM5
3 D2 55 P-5 107 M4 159 G-14
4 P-1 56 D44 108 M5 160 AM6
5 D3 57 D45 109 M6 161 AM7
6 D4 58 D46 110 G-9 162 AM8
7 D5 59 D47 111 M7 163 P-14

8 D6 60 G-6 112 M8 164 AM9
9 G-1 61 D48 113 M9 165 AMIO
10 D7 62 D49 114 MIO 166 AMll
11 D8 63 D50 115 P-9 167 AM12
12 D9 64 D51 116 Mil 168 G-15
13 DIO 65 P-6 117 M12 169 AM13
14 P-1 66 D52 118 M13 170 AM14
15 Dll 67 D53 119 M14 171 AM15
16 D12 68 D54 120 G-10 172 P-15

17 D13 69 D55 121 M15 173 M R WB
18 D14 70 G-7 122 M16 174 M_CE2H
19 G-2 71 D56 123 M17 175 M_CE1B
20 D15 72 D57 124 M18 176 M-OEB
21 D16 73 D58 125 P-10 177 G-17
22 D17 74 D59 126 M19 178 ACll
23 D18 75 P-7 127 M20 179 ACIO
24 P-2 76 D60 128 M21 180 AC9
25 D19 77 D61 129 G-11 181 AC8
26 D20 78 D62 130 M22 182 P-CO
27 D21 79 D63 131 M23 183 AC7
28 D22 80 G-16 132 M24 184 AC6
29 D23 81 XO 133 M25 185 AC5
30 G-3 82 XI 134 P-11 186 AC4
31 D24 83 X2 135 M26 187 G-CO
32 D25 84 G-CO 136 M27 188 AC3
33 D26 85 X3 137 M28 189 AC2
34 D27 86 X4 138 M29 190 ACl
35 P-3 87 X5 139 G-12 191 ACO
36 D28 88 X6 140 M30 192 NODECLK
37 D29 89 P-CO 141 M31 193 G-CLK
38 D30 90 X7 142 M32 194 P-CLK
39 D31 91 X8 143 M33 195 P-CO
40 G-4 92 X9 144 P-12 196 RESETB
41 D32 93 G-CO 145 M34 197 OE
42 D33 94 XIO 146 M35 198 HOLDB
43 D34 95 XI

1

147 M36 199 WMEM
44 D35 96 X12 148 M37 200 TSCLK
45 P-4 97 P-CO 149 G-13 201 G-CO
46 D36 98 X13 150 M38 202 STARTB
47 D37 99 X14 151 M39 203 WCPU
48 D38 100 X15 152 AMO 204 READB
49 D39 101 G-8 153 AMI 205 WRITEB
50 G-5 102 MO 154 P-13 206 TESTB
51 D40 103 Ml 155 AM2 207 G-0

52 D41 104 M2 156 AM3 208 ACKB
Signals names ending with "B" indicate active low, all others active high. The "CO" next to a

power or ground indicates its use is for the core logic vs. the output pads.

- 15-

Table 6. MultiKron_vc - description of pin names.

Pin Name Direction Description

ACKB (Output) This low active signal indicates that the

MultiKron_vc chip has completed a CPU Read or

Write cycle.

AGO-AC 11 (Input) CPU Address Lines to the MultiKron_vc chip.

AM0-AM15 (Output) SRAM Address Lines from the MultiKron_vc chip.

D0-D63 (Sidirectional) CPU Data Sus to the MultiKron_vc chip.

G-x (Input) GROUND for PADS
G-CO (Input) GROUND for Core logic

G-CLK (Input) GROUND for clock distribution pad

HOLDB (Input) This low active signal is used to extend a processor

read by keeping the data and ACKS signal active

until it is de-asserted.

M0-M39 (Sidirectional) SRAM Data Sus from the MultiKron_vc chip.

Node_clk (Input) The Node clock to the MultiKron_vc chip. It is

used to synchronize all internal chip operations.

OE (Input) When low, this signal disables ALL normal output

pins; when high all output pins are enabled.

P-x (Input) POWER for PADS
P-CO (Input) POWER for Core logic

P-CLK (Input) POWER for clock distribution pad

READS (Input) This low active signal from CPU starts a read cycle

on the MultiKron_vc chip.

RESETS (Input) This low active asynchronous signal resets the

MultiKron_vc chip to its initial state. This signal

MUST be active for a minimum of five node clocks.

STARTS (Input) This low active signal is used in conjunction with

the READS and WRITES to initiate a processor

interaction, if always kept active this signal has no

effect.

TESTS (Input) This low active signal places the MultiKron_vc

chip in a general test mode, which disables all

counters and allows them to be written and

incremented by the CPU. This pin MUST be

disabled for normal operation.

Timestamp_clk (Input) The Timestamp clock to the MultiKron_vc chip. It

MUSTNOT Exceed 1/3 the Node clock frequency.

WMEM (Input) Wait State for an SRAM Read/Write request, only

active during a MultiKron_vc chip RESET.

WCPU (Input) Wait State to respond to a CPU Read/Write request,

only active during a MultiKron_vc chip RESET.

WRITES (Input) This low active signal from CPU starts a write

cycle on the MultiKron_vc chip.

X0-X15 (Input) External Signal for Resource Counters, counts on

positive edge.

- 16-

Table 7. MultiKron_vc MCM - 140 QFP Pin Assignments (950316).

1 GND-0 36 VDD-4 71 GND-9 106 VDD-1

3

2 DO 37 D26 72 D52 107 X14
3 D1 38 D27 73 D53 108 X15
4 D2 39 D28 74 D54 109 ACll
5 VDD-0 40 GND-5 75 VDD-9 110 GND-14
6 D3 41 D29 76 D55 111 AGIO
7 D4 42 D30 77 D56 112 AC9
8 D5 43 D31 78 D57 113 AC8
9 GND-1 44 VDD-5 79 GND-10 114 VDD-14
10 D6 45 D32 80 D58 115 AC7
11 D7 46 D33 81 D59 116 AC6
12 D8 47 D34 82 D60 117 AC5
13 VDD-1 48 GND-6 83 VDD-10 118 GND-1

5

14 D9 49 D35 84 D61 119 AC4
15 DIO 50 D36 85 D62 120 AC3
16 Dll 51 D37 86 D63 121 AC2
17 GND-2 52 VDD-6 87 GND-11 122 VDD-1

5

18 D12 53 D38 88 XO 123 ACl
19 D13 54 D39 89 XI 124 AGO
20 D14 55 D40 90 X2 125 NODEGLK
21 VDD-2 56 GND-7 91 VDD-11 126 GND-1

6

22 D15 57 D41 92 X3 127 RESETB
23 D16 58 D42 93 X4 128 OE
24 D17 59 D43 94 X5 129 HOLDB
25 GND-3 60 VDD-7 95 GND-1

2

130 VDD-1

6

26 D18 61 D44 96 X6 131 Wmem
27 D19 62 D45 97 X7 132 TSGLK
28 D20 63 D46 98 X8 133 STARTB
29 VDD-3 64 GND-8 99 VDD-1

2

134 GND-1

7

30 D21 65 D47 100 X9 135 Wcpu

31 D22 66 D48 101 XIO 136 READB
32 D23 67 D49 102 Xll 137 WRITEB
33 GND-4 68 VDD-8 103 GND-1

3

138 VDD-1

7

34 D24 69 D50 104 X12 139 TESTB
35 D25 70 D51 105 X13 140 AGKB

Signals names ending with "B" indicate active low, all others active high.

36 PWR&GND pins 64 I/O pins

104 signal pins 140 Total Pins 39 In pins

1 Out pins

- 17-

I

CD

CD

CD

CD
lO
/

CO
H
CD

CM
CM CO

CO

t
m

I

CM
CO
cr
ULI

Q
DC
O

I

X
o
X

CD
,L.

ri"

CO
_L

CO

CD

CO
DC
CO
O

CO

DQ

CD
lO

<
I

—

CO
LU

h-

- CM 93a 3iaUN3 CD

- CM 93a N0iiaan9iJN03 CD

CO
/_

CO
I

—

m
CM

CO

t
m
CM
CO

U

>iNua

£ >INUa

z >iNua

gE CO
CM oi 1 XNua

CXD

CM

O
un
CD

CO

CD
CM 8 CO 1 >iNaa

< 0
I LU
CO DC

z >iNaa

£ >iNua

>iNHa

Figure

1.

Block

diagram

of

the

MultiKron_vc

Chip

WRITE

TAsu 15 ns 0 ns

0 ns T^hld 0 ns

TWsu 10 ns 'TWhid 10 ns

TKsu 10 ns 'I^hld 5 ns

CLK -J

CLK —— —_— __

OE\

-H...

5
TA, , ,

ADDR ^
™su

-H ^ TRDhirt

DATA y ”
su ™j!j|id

ReadB
TKsu

rr i

ACKB

Figure 2. MuItiKron__vc I/O Cycle

